< h2>График функции y = -1x²+x+1 (минус 1 умножить на x во 2-ой степени (в квадрате) плюс x плюс 1)

Функция (можно несколько через ; )

Интервалы задаются через точку с запятой (; ). При задании интервалов и шага можно использовать математические выражения (прим. -4pi; (5/6)pi) или слово "авто" или оставить поля пустыми (эквивалентно "авто")

Интервал по оси X
Интервал по оси Y
Шаг

Округление:

Знаков после запятой

* - обязательно заполнить

Таблица точек функции f(x) = -1x^2+x+1

Показать/скрыть таблицу точек
x f(x)
-10-109
-9.5-98.75
-9-89
-8.5-79.75
-8-71
-7.5-62.75
-7-55
-6.5-47.75
-6-41
-5.5-34.75
-5-29
-4.5-23.75
-4-19
-3.5-14.75
-3-11
-2.5-7.75
-2-5
-1.5-2.75
-1-1
-0.50.25
01
0.51.25
11
1.50.25
2-1
2.5-2.75
3-5
3.5-7.75
4-11
4.5-14.75
5-19
5.5-23.75
6-29
6.5-34.75
7-41
7.5-47.75
8-55
8.5-62.75
9-71
9.5-79.75
10-89

График построен по уравнению, но можно воспользоваться таблицей точек, чтобы построить такой же график по точкам .

Чтобы скачать график, нажмите на кнопку ‘Скачать график’ под ним .

Построение графика функции y = -1x²+x+1 по шагам

-1x²+x+1 = 0 — это квадратичная функция. Коэффициенты a, b, c нашей квадратичной функции равны:

  • a = -1
  • b = 1
  • c = 1

Ее график — симметричная парабола. Найдем направление ветвей нашей параболы.

Направление ветвей параболы

Если коэффициент a положительный, то ветви направлены вверх, если отрицательный — вниз.

У нас коэффициент a — отрицательный, значит ветви нашей параболы направлены вниз.

Найдем координаты вершины параболы

\[X_{0}=\frac{-b}{2*a}=\frac{-1}{2*(-1)}=1\]

Для того, чтобы найти Y, подставим наш найденный X в уравнение:

\[Y_{0}=a*x^{2}+b*x+c = -1*1^{2}+1*1+1 = 1\]

Координаты вершины нашей нашей параболы [X0, Y0] = [1, 1].

Решение уравнения -1x²+x+1 = 0 . Поиск нулей функции.

Найдем точки пересечения с осью X. Для этого Y должен равняться 0. То есть решим уравнение: -1x²+x+1 = 0

-1x²+x+1 = 0 — это квадратичное уравнение, найдем его дискриминант:

\[D=b^{2}-4ac=1^{2}-4*(-1)*1=5\]

Так как дискриминант больше нуля, то у данного уравнения два корня, найдем их:

\[X_{1}=\frac{-b+\sqrt{D}}{2*a}=\frac{-1+\sqrt{5}}{2*(-1)}=-1\]\[X_{2}=\frac{-b-\sqrt{D}}{2*a}=\frac{-1-\sqrt{5}}{2*(-1)}=2\]

Подставим значения X1 и X2 в наше уравнение:

\[Y_{1}=a*x_{1}^{2}+b*x_{1}+c = -1*(-1)^{2}+1*(-1)+1 = -1\]\[Y_{1}=a*x_{2}^{2}+b*x_{2}+c = -1*2^{2}+1*2+1 = -1\]

То есть график функции пересекается с осью X в точках -1 и 2 . Наши точки :

  • [X < sub>1 , Y < sub>1 ] = [-1, -1]
  • [X < sub>2 , Y < sub>2 ] = [2, -1]

Построение графика квадратичной функции

  1. Для построения графика нужно провести вспомогательную линию (можно пунктиром) из точки вершины параболы [1, 1] параллельно оси Y. Относительно этой линии парабола будет идти симметрично. Левая и правая часть графика относительно этой линии называется ветви параболы.
  2. Для построения симметричной параболы нужно минимум три точки — вершина параболы и еще две. Если точек не хватает или для большей точности можно взять еще несколько из таблицы точек. Чтобы высчитать их нужно взять значение X из таблицы и подставить в функцию Y = -1x²+x+1. Калькулятор это сделал за Вас.
  3. Строим наш график по найденным точкам симметрично вспомогательной линии.

Свойства функции Y = -1x²+x+1

  • Область определения \(x \in (- \infty;+ \infty)\) — все действительные числа.
  • Область значений \(y \in [1;- \infty)\) — все действительные числа меньше или равные 1.
  • Функция убывает при \(x \gt 1\), функция возрастает при \(x \lt 1\).
  • Наибольшее значение функции y = 1 — в вершине параболы при x = 1.
  • Математические выражения для построения графиков

    Для построения графиков математических выражений доступно следующее:

    Функции

    Показать / скрыть функции
    • abs -модуль числа
    • acos(arccos) -арккосинус
    • acosh -гиперболический арккосинус
    • arcctg(arccot, arccotan) -арккотангенс
    • arcsec -арксеканс
    • arccsc(arccosec) -арккосеканс
    • asin(arcsin) -арксинус
    • atan(atn, arctan, arctg) -арктангенс
    • atan2 -арктангенс двух переменных(т . е . atan2(a, b))
    • atanh -гиперболический арктангенс
    • avg -среднее арифметическое набора значений
    • bindec -двоичное в десятичное
    • ceil -округляет дробь в большую сторону
    • cos -косинус
    • cosec(csc) -косеканс
    • cosh -гиперболический косинус
    • ctg(cot, cotan, cotg, ctn)) -котангенс
    • decbin -переводит число из десятичной системы счисления в двоичную
    • dechex -переводит число из десятичной системы счисления в шестнадцатеричную
    • decoct -переводит число из десятичной системы счисления в восьмеричную
    • deg2rad -преобразует значение из градусов в радианы
    • exp -вычисляет степень числа e
    • expm1 -возвращает exp(number) — 1, рассчитанное таким образом, что результат точен, даже если значение number близко к нулю .
    • floor -округляет дробь в меньшую сторону
    • fmod -возвращает дробный остаток от деления по модулю
    • hexdec -переводит число из шестнадцатеричной системы счисления в десятичную
    • hypot -hypot(x, y) возвращает длину гипотенузы прямоугольного треугольника с длинами сторон x и y или расстояние точки(x, y) до начала координат Эквивалентно sqrt(x * x + y * y)
    • if -оператор if (если). if (100 & gt; 99, 30, 0) = если 100 & gt; 99, то 30, иначе 0
    • intdiv -целочисленное деление
    • log(ln) -натуральный логарифм
    • log10(lg) -десятичный логарифм
    • log1p -возвращает log(1 + number), рассчитанный так, что результат точен, даже если значение number близко к нулю
    • max -максимальное из набора значений
    • min -минимальное из набора значений
    • octdec -переводит число из восьмеричной системы счисления в десятичную
    • pi -pi() или pi — выводит число Пи
    • pow -Возведение в степень . pow(x, y) = x в степени y = x ^ y
    • rad2deg -преобразует значение из радианов в градусы
    • round -округляет число типа float
    • sec -секанс
    • sin -синус
    • sinh -гиперболический синус
    • sqrt -квадратный корень
    • tan(tn, tg) -тангенс
    • tanh -гиперболический тангенс

    Операторы

    +- * / ^

    ^ -возведение в степень

    x ^ (1 / n) — корень n — ой степени от числа x . То есть 8 ^ (1 / 3) = 3 √8 = 2
    < h3>Логические операторы

    • == -равно
    • != -не равно
    • < -меньше
    • -больше
    • >= -больше либо равно
    • <= -меньше либо равно
    • &&
    • || -Или

    Константы

    • pi = 3.14159265359
    • e = 2.71828182846